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Dilatational bands in rubber-toughened polymers 
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A theory is advanced to explain the effects of rubber particle cavitation upon the deformation and 
fracture of  rubber-modified plastics. The criteria for cavitation in triaxially-stressed particles are 
first analysed using an energy-balance approach. It is shown that the volume strain in a rubber 
particle, its diameter and the shear modulus of the rubber are all important in determining whether 
void formation occurs. The effects of rubber particle cavitation on shear yielding are then 
discussed in the light of earlier theories of dilatational band formation in metals. A model proposed 
by Berg, and later developed by Gurson, is adapted to include the effects of mean stress on 
yielding and applied to toughened plastics. The model predicts the formation of cavitated shear 
bands (dilatational bands) at angles to the tensile axis that are determined by the current effective 
void content of the material. Band angles are calculated on the assumption that all of the rubber 
particles in a band undergo cavitation and the effective void content is equal to the particle volume 
fraction. The results are in satisfactory agreement with observations recorded in the literature on 
toughened plastics. The theory accounts for observed changes in the kinetics of tensile 
deformation in toughened nylon following cavitation and explains the effects of particle size 
and rubber modulus on the brittle-tough transition temperature. 

1. I n t r o d u c t i o n  
It has long been recognised that microscopic cavita- 
tion processes make an important contribution to the 
fracture resistance of rubber-toughened polymers, 
including both plastics and thermosets. Cavitation 
of toughened plastics was first reported in high-impact 
polystyrene (HIPS), which absorbs energy principally 
through multiple crazing of the polystyrene (PS) 
matrix [1]. It is clear from several transmission 
electron microscopy (TEM) studies that fibrillation 
of the PS to form crazes is accompanied by some- 
what coarser fibrillation of the rubber phase in the 
neighbouring particles [2-4], a process that 
enables the rubber particles to match the high 
strains in the surrounding matrix. Recently, Kramer 
et al. [5] used real-time X-ray measurements on 
HIPS to show that cavitation of the rubber particles 
actually precedes crazing of the matrix under 
tensile impact conditions, Cavities formed within the 
rubber particles can thus be seen as nuclei for 
craze growth, which occurs through the meniscus- 
instability mechanism proposed by Argon and 
Salama [63. 

Rubber particle cavitation is also of critical import- 
ante for toughening of plastics that are resistant to 
crazing. This was first recognised by Breuer et aL [7], 
who combined TEM with low-angle light scattering to 
study deformation mechanisms in ABS and rctbber- 
modified PVC. They observed X-shaped light-scatter- 
ing patterns, whieh are consistent with the formation 
of planar cavitated shear bands having their normals 
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at about 35 ~ to the tensile axis. Fibrillation of a con- 
tinuous rubber phase in toughened PVC has been 
reported by Michler [8]. 

Cavitation of the rubber particles has also been seen 
in a number o f  other toughened polymers, notably 
epoxy resins containin~ CTBN rubber [9-11] and 
nylon-rubber blends [12]. Recently, Yee and Pearson 
have employed optical microscopy to observe particle 
cavitation in toughened epoxy resins [13] and shown 
that this precedes large-scale shear yielding of the 
matrix. Furthermore, Borggreve and Gaymans have 
shown that the brittle-tough transition in rubber- 
toughened nylon 6 shifts to higher temperatures when 
rubbers of increasing shear modulus (and hence in- 
creasing cavitation resistance) are used as toughening 
agents [14]: this work supports the view that particle 
cavitation is a prerequisite for extensive shear yielding 
of  the matrix polymer under the severe conditions of 
the notched impact test. The same authors have 
shown that the brittle-tough transition temperature in 
toughened nylon decreases with decreasing particle 
size, but only down to a limiting diameter of about 
0.2 I~m, below which the rubber particles appear to be 
very difficult to cavitate [15]. 

Direct TEM evidence of cavitation in toughened 
nylons has been published by Ramsteiner et al. 
[16,17], and comparable SEM observations have 
been made by Speroni et al. [18], Bucknall et aL [19] 
and Dijkstra [20]. Both Ramsteiner and Speroni 
showed that the voids were associated preferentially 
with shear bands. 
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These stndies demonstrate that expansion, interac- 
tion and eventual coalescence of voids, following cavi- 
tation of the rubber particles, play a central role in the 
fracture behaviour of many rubber-toughened poly- 
mers, including epoxy resins, polyamides and other 
craze-resistant polymers. This role is dearly important 
in allowing the toughened polymer to reach high plas- 
tic strains within the  zone of high triaxial stress 
around a crack tip. The present paper examines the 
criteria for rubber particle cavitation and the effects 
of cavitation on the subsequent yield behaviour of 
a non-crazing toughened polymer. 

2. A model for rubber particle cavitat ion 
There is no established criterion for cavitation in rub- 
ber particles. The fracture mechanics model of Gent 
[21] is not really appropriate because it deals with 
bulk samples of rubber, which contain defects (con- 
taminant particles, etc) with sizes in the range 0.5 gm 
to ~ 1 mm. The rubber particles in toughened grades 
of epoxy resin and nylon have diameters of the order 
of 0.5 gm and it is very unlikely that every particle 
contains a defect of this size. 

An alternative model  is outlined below. Its basic 
assumptions are: (a) that the largest defects within 
a typical rubber particle under triaxial tension are 
microvoids with dimensions of the order of a few 
nanometres; and (b) that these microvoids will expand 
only if the resulting release of stored volumetric strain 
energy is sufficient both to increase the surface area of 
the void and to stretch the surrounding layers of 
rubber. 

For convenience of calculation the void is assumed 
to be a sphere of radius r lying at the centre of 
a spherical rubber particle of radius R, which is well 
bonded to the matrix. If cavitation is initiated at 
a critical mean stress (Yme, the strain energy of the 
particle immediatcJ, y before initiation is given by 

4 3 2 a 2 
Uo = ~rcR 14"*, = ~xR KAvo (1) 

where W* is the stored energy density of the rubber, 
K is its bulk modulus and Avo is the volume strain 
within the rubber phase immediately before cavita- 
tion. The radius of the particle is assumed to remain 
constant during the expansion of the cavity, so that no 
additional external work is done on the particle by the 
matrix. In relation to the rubber particle, the volume 
fraction of the cavity is r3/R 3 and the resulting volume 
strain within the cavitated rubber phase is therefore 
(Avo -- r3/Ra). 

The formation of a cavity introduces two additional 
contributions to the energy of the rubber particle: 
a surface energy 4rtr2F, where F is the surface tension 
of the rubber; and the shear strain energy, ~W*dV, 
required to stretch the rubber and allow the cavity to 
expand. The total energy U of the cavitated particle is 
then given by 

v 2- R3K(Avo r3 2 = 3 \ - R ~} + 4~r2r + ~W'~ dV (2 )  

6800 

A typical value of  F for a hydrocarbon elastomer is 
0.03 N m -  1 [22]. 

In order to calculate the shear strain energy density 
term W~ we use the standard equation of rubber-like 
elasticity theory: 

G 2 W~ = ~ - ( ~ + ~ 2 + ~ , ~ - 3 )  (3) 

The formation of the cavity causes a concentric rubber 
shell of radius a to undergo equibiaxial stretching to 
a final radius b. The principal extension ratios are then 
9~1 = ~-2 = ~ and )~3 = )~-z, where L = b/a. This gives 

W* = G(2~,2 + L - 4 _  3) (4) 

If P,, Pb are the densities of the rubber phase before 
and after cavitation, then the relationship between the 
extension X of a thin spherical shell and its radial 
distance b from the centre of the cavitated particle is 

p,a 3 = pb(b 3 -- r 3) 

which on rearranging gives 

b = a~ = r~(~ ~ - - P a l  - I"  
P J  

(5) 

(6) 

Noting that dV = 4~xb 2 db, the following expression 
can now be obtained for the shear strain energy Us of 
the cavitated particle 

R 
/ t  

Us -- ~ 4xb z W(b)db (7) 

b = r  

Combining Equations 4, 6 and 7 then gives 

1 
f ~2(2~,2 + ~L -r Us = 2xr3 oG - 3)dZ (g )  

k =  kf 

where P represents the density ratio 9a/Pb, which gen- 
erally lies between 0.99 and 1.0, and ~,f is the extension 
ratio of the rubber at failure in equibiaxial tension. 
Equation 8 can be written in abbreviated form 

Us = 2~zr3 pGF(~.f) (9) 

Numerical integration shows that F(Lf) increases from 
0.7 to 1.3 over the range of ~f values from 2 to 6. 
Reported values of ~f for vulcanised natural rubber in 
equibiaxial tension are between 3.5 and 4.0 [23]. 

The above treatment neglects the small Volume of 
rubber at the centre of the particle which is stretched 
beyond Lf and fails. Writing af for the radius of this 
zone and ~ for the shear strain energy density at 
failure, and using the expression for a from Equation 
6, the energy required to rupture this region is given 
by 

4 3 4~r 3 W* (10) 
Usf = ~rcafW~ - 3 ( k ~ - p )  

As both Us and Usf are proportional to r 3 they can 
be combined into a single expression, with a suitable 
modification of F(~.f). The final expression for the 



energy of a cavitated particle is then 

2 3( ,3 2 
U = ~rcKR A v o - R 3 ]  + 4rtr2F 

+ 2~r3GpF(~f) 

or 

(11) 

2 ~ [ (  r3"~2 6 F r  / 
U = ~rtKR Avo - -  R3 ) + K--~R ~ 

3GpF(~,f) r 3 ] 
+ ~ ~ j  (12) 

If the initial volume strain in the rubber phase Av0 is 
sufficiently high, this function passes through a very 
minor maximum at small r, followed by a more pro- 
nounced minimum as the volume strain due to the 
cavity r3/R 3 approaches the original dilatational 
strain in the rubber phase. From Equation 12 it can be 
seen that the importance of the surface energy term in 
relation to the total energy U decreases as the particle 
radius R increases, with the result that lower values of 
Avo, and therefore of applied stress, are required to 
cavitate the particle. Fig. 1 illustrates the effect of 
keeping the volume strain Avo constant and varying 
R. The data are plotted in terms of the reduced vari- 
ables U/Uo and r/R, where Uo is the energy of 
the strained particle immediately before cavitation 
(Equation 1). The calculations are based on a rubber 
with shear modulus G = 0.4 MPa, bulk modulus 
K = 2000 MPa, surface tension F = 0.03 N m-*,  
9 = 1.0 and F0v0 = 1.0, with the initial volume strain 
in the particle set at 0.4%. It is clear that only particles 
with R > 125 nm will cavitate under these conditions. 

3.  Y i e l d i n g  w i t h  p l a s t i c  d i l a t a t i o n  
As noted in the Introduction, there is evidence from 
a number of laboratories that rubber particle cavita- 
tion in several different polymers is concentrated with- 
in regions of high shear strain. Similar cavitated yield 
zones have been reported in the metals literature, 
where they are termed 'dilatation bands'. A recent 
book by Thomason critically reviews the models that 
have been proposed to describe the formation and 
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Figure 1 Calculated potential energy of a cavitated rubber particle 
as a function of the reduced radius of the void, r/R, for particles of 
radius R in the range 0.i-100 gin. Values calculated using Equation 
12 witt-r fixed volume strain Avo = 0.004. 

failure of dilatational bands in steels and other ductile 
metals 1-24]. 

Although there are many similarities between duc- 
tile metals and polymers, there are also important 
differences. In particular, polymers exhibit a much 
greater ability to extend and strain harden, through 
the process of molecular orientation. Whereas cavita- 
tion in metals often causes a reduction in ductility 
because the voids coalesce at moderate strains, cavita- 
tion in polymers is stabilised by orientation hardening 
and strengthening, allowing energy absorbing internal 
necking to take place extensively throughout the 
stressed region�9 

The effects of nucleation and growth of microvoids 
on the yield behaviour of ductile polymers are ana- 
lysed below using the constitutive equations for a por- 
ous ductile material developed by Gurson [25] on the 
basis of previous work by Berg'J26]. These authors 
adopted a continuum approach to materials under- 
going plastic deformation accompanied by void 
formation. Their model, which is directed essentially 
at describing the yield behaviour of ductile metals, is 
reviewed briefly below and the modifications neces- 
sary in applying it to polymers are then discussed. 

In order to understand the kinetics of yielding it is 
necessary to re la te  the macroscopic response of the 
polymer to its microscopic behaviour. At the macro- 
scopic level we consider an element of ductile polymer 
containing a large number of microvoids, sufficient to 
enable it to be treated as homogeneous, as illustrated 
in Fig. 2. The term 'macroscopic' refers to average 
values of physical properties (stress, strain, etc.) of the 
voided element and 'microscopic' refers to the proper- 
ties of the matrix at individual points around the 
voids. 

For  a homogeneous rigid-plastic material, in which 
pressure has no effect upon yielding, the von Mises 
yield criterion can be written (indices range from 1 to 
3, 8 u represents the Kroneker delta and repeated 
indices indicate summation) 

3 
~sus u = (yyz (13) 
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Figure 2 Element of ductile material containing a large number of 
microvoids. 
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where 0.y is the tensile yield stress, the stress deviator 
sij is related to the stress components 0.u by the 
relation 

1 
Sij = 0. i j  - -  ~0.kk~ij (14) 

and the mean stress 0.m (sometimes called hydrostatic 
stress or negative pressure) is given by 

0 .kk  O"1 "-~ 0 .2  ,'9 L 0.3 
0.m 3 3 = - p (15) 

where p is pressure. The von Mises equivalent stress is 
defined as 

0.~ = - 0 . 5 )  2 + (0 .5  - 0 .3 )  2 + (0 .3  - 

/3s  i 0.e = N/2 jsij (16) 

If the cartesian axes coincide with the three principal 
directions Equation 13 can be written. 

A yield function describes the locus in stress space of 
points for which the material will undergo plastic 
yield. The following simple yield function (I) can be 
derived from Equations 13 and 16 for a v o n  Mises 
material 

(I) - a 1 = 0 ( 1 7 )  
0.y 

Several studies have demonstrated clearly that pres- 
sure affects the yield behaviour of polymers [27-29]. 
This is most easily seen in comparisons between 
0.c and 0.T, the compressive and tensile values of 
uniaxial yield stress: for many ductile plastics 
OC/0.T "~ 1.3. The experimental data can be correlated 
by introducing an additional pressure-dependent term 
into the von Mises criterion [28, 29] 

0.2 = (0.0 -- go.m) 2 (18) 

where 0.0 is the yield stress in the absence of any 
overall hydrostatic pressure and g is a dimensionless 
material constant, which characterizes the pressure 
sensitivity of yielding. It is related to 0.c and 0.T by: 

g = 3 ( ~  
\Oc TOTT (19) 

where g ,~ 0.39 for many polymers. The yield function 
(Equation 17) must also be modified to take account 
of the pressure dependence Expansion of Equation 18 
gives 

O(0.e'0.m) = 0.-~0 "}- g(0.m) - -  1 = 0 (20) 

where 

g(0.m) = g~om (2  -- g0.~"~ (21) 
ao / 

describes the pressure dependence of the yield func- 
tion. Fig. 3 shows the effects of the mean stress on the 
yield locus. The yield surface is a cone in stress space; 
which intersects the !:2, 1-3 and 2-3 planes to form 
distorted ellipses, For g = 0, g(0.m) = 0, and the yield 
function coincides with that for a pressure- 
independent yon Mises material, for which the yield 
surface is a circular cylinder.  

6 8 0 2  

For a pressure-independent material containing 
spherical voids, Gurson [25] found the following ex- 
pression for the yield function: 

(I) - ~ -  + 2fcos  _ f 2  _ 1 = 0 (22) 
0.y 

where f is the current volume fraction of  voids. The 
equivalent and mean stresses, 0.~ and Om, are now 
'macroscopic' quantities, whilst 0.y is the (microscopic) 
matrix flow stress. Equations 20-22 can be combined 
to give the following yield function for a pressure- 
dependent material containing spherical voids 

q) = 0"-~ + 2"]'tOrn 
0.0 / 

+ 2fcosh(30.m~ __f2~_ 1 = 0 (23) 
\ 20 .o /  

where 0.o, as defined by Equation 18, replaces the 
tensile yield stress %. Only for pressure-independent 
materials is 0.o = 0.y. 

Gurson's analysis can thus be adapted to model 
a cavitating polymer. Fig. 4 shows sections through 

'1 ~ �9 1.6_ .6 -0~8 0.0  0.8 1.6 2.4 

Figure 3 Pressure-modified von Mises yield surface in adimen- 
sional principal stress space for a non-cavitating polymer with 
Ix = 0.39. (1), (2) and (3) are the principal stress axes, and (1,2, 3) is 
the space diagonal. 
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Figure 4 Effect on the yield locus of a pressure dependent material 
(Ix = 0.39) as the void volume fraction f is varied between 0 and 0.3. 
(a) Uniaxial tension; (b) crack tip plane, strain tension. 



four yield surfaces, calculated using Equation 23, for 
materials with f =  0, 0.1, 0.2 and 0.3. In this diagram 
the abscissa lies along the stress-space diagonal de- 
fined by Crl = cr2 = o3 and the distance of any point 
on the diagram from the space diagonal indicates the 
magnitude of the effective stress Cre. The calculations 
show that an increase in void volume fraction causes 
additional curvature of the yield surface, so that the 
apex of the original cone, which represents yielding of 
a fully-dense polymer, becomes rounded when voids 
are present. It is clear that, in the presence of micro- 
voids, the yield condition is reached well before the 
macroscopic equivalent stress equals the matrix flow 
stress, even when the mean stress cr m is low or zero. 
Furthermore, under the plane strain conditions pre- 
vailing aheaff of a crack tip, where crm is initially high 
compared with ~e, the absolute values of stress at yield 
are very much reduced when the polymer is able to 
cavitate. 

Fig. 5 presents the results of calculations based on 
Equation 23 which illustrate the effects of void volume 
fraction on: (a) (Yty(f)/(~ty(O), the adimensional yield 
stress under uniaxial tension; and (b) Cr~y(f)/C~ey(0), 
the adimensional effective stress at yield at a point 
immediately ahead of asharp  crack. The latter calcu- 
lation is based on a polymer with Poisson's ratio 
v = 0.4, with the crack tip in plane strain. The results 
emphasise the point that cavitation has a more signifi- 
cant effect on yielding at a crack tip than it does in 
a specimen subjected to uniaxial tension. 

The volume fraction of voids may vary during 
deformation. This can be taken into account by con- 
sidering the rate of increase of the void volume frac- 
tion: 

/ = /growth -t- /nucleation (24) 

As the volume of the matrix polymer itself does not 
change with plastic deformation, the rate of change of 
the total volume is directly proportional to the rate of 
void growth [30, 31] 

f,,ow,~ = ( 1 - f ) ~  (25) 

In order to relate the stress components at yielding 
to the plastic strain increment it is necessary to deter- 
mine a flow rule. In general this can be done by 
defining a plastic potential, i.e. a function of stress (at 
yielding) which relates the direction of plastic flow to 
the shape of the yield surface in stress space. In the 
conventional theory of plasticity the yield function 

is used as a plastic potential [32] 

~;~ = A~(~i j (26) 

where A is a macroscopic scalar quantity that can be 
taken to denote an effective stretching and is, in gen- 
eral, a function of stress, stress rate, deformation his- 
tory and void volume fraction [33]. 

In the case of polymeric materials the yield function 
is dependent Upon hydrostatic pressure and the 

condition 

=.  0 (27) 
ao'~j 
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Figure 5 Effect of void volume fraction on: (a) the adimensional 
tensile yield stress Jetty(f )/%y(0)] and (b) theadimensional effective 
stress at yield [%y(f)/~ey(0)], according to the modified Gurson 
model. 

is not satisfied. Therefore, on the basis of the 
mathematical theory of plasticity, a volume change is 
expected to accompany plastic deformation. However, 
several experimental studies, reviewed by Bowden 
[34] and Ward [35], have clearly indicated that in the 
absence of cavitation, flow after yield occurs at essen- 
tially constant volume or with a very limited increase 
in volume. Moreover, as discussed by Bowden and 
Ward, in polymers it is not necessary to invoke a con- 
tinuously increasing plastic dilatation or a violation of 
St Venant's principle (for isotropic materials, the prin- 
cipal axes of stress and, plastic strain rate coincide) to 
explain the pressure dependence of flow stress, be- 
cause compression significantly reduces molecular 
mobility and so increases the yield stress. From the 
above discussion it appears that the normality rule 
applies to isotropic polymers [33], so that the yield 
function ~ can be used as a plastic potential. 

As Berg [26] and Gurson [25] have stated, follow- 
ing a previous comment by Bishop and Hill [36, 37], 
the local validity of the normalitY rule for the ductile 
matrix material implies that the same normality rule 
applies macroscopicaUy. From Equation 26it  follows 
that 

g,~ = AO~ u 

= + 

~-~- ~i---~ 

-t- O(y----~CSi~ ' -t- ~ f ~ o . i j j  (28)  " 

If nucleation is neglected, this equation can be sim- 
plified. Moreover, for non-hardening materials, 
doo = 0 and Equation 28 can therefore be written (see 
Appendix I )  

A[ 3s'  ] 
eij = k2o0  + ~8 u (29) 

where 

n.L  j (30) 
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The Berg-Gurson model has been reviewed by 
Thomason [24], who has proposed a modified ap- 
proach which takes into account the stress concentra- 
tions in ligaments between cavities and the resulting 
necking of these ligaments. The predictions of the 
modified model are in better agreement with the ob- 
served relationships between void contents and true 
strains to failure in ductile metals. Thomason's objec- 
tions to the validity of the Berg-Gurson model do not 
appear to be applicable to polymer-based materials, 
since internal necking in the ligaments between 
cavitated rubber particles is not followed by void 
coalescence, which occurs only at very high strains in 
ductile polymers. The modified Berg-Gurson model 
outlined above appears therefore to be a realistic one 
for representing the deformation behaviour of a poly- 
mer containing microvoids. 

a 

I r 

a 

Figure 6 S c h e m a t i c  r e p r e s e n t a t i o n  of  a d i l a t a t i o n a l  b a n d .  

4. Deformation in plane plastic 
strain--dilatational bands 

When an element of material is restrained in two 
dimensions the only types of deformation compatible 
with the constraint are simple shear parallel to the 
plane and volume dilatation normal to it. Where 
both are present, the result is a dilatation band, as 
illustrated in Fig. 6. The conditions for development of 
such a band in a porous plastic polymeric material will 
be examined following the approach proposed by 
Berg [26]. 

Defining the plane of deformation illustrated in 
Fig. 6 as the 1-2 plane we can write 

~13 = ~23  ~ - & 3 3  = O 1 3  "~-- (Y23 ~- 0 (31) 

Applying Equation 29 to the 33 (zero strain rate) 
direction and substituting for $33 using Equation 14 

(03"11 "q- 0 2 2  ) 
o33 = 2 0tOo (32) 

The angle of the dilatational bands can be deter- 
mined as shown in Fig. 7, using the Mohr's circle 
construction. The circle shown is for the direct stresses 
ol ,  02 and shear stress z, A second Mohr's circle can 
be constructed for deviatoric stress components in the 
plane of deformation, by subtracting the mean stress 
from the normal stress components. From Equa- 
tions �9 15 and 32 am is given by: 

(Oll H- 022) 0tOo 
O m = (33) 

2 3 

The new Mohr's circle has the same diameter as the 
original one and is formed simply by moving the 
origin of the stress plane (Fig. 7) onto the line a-a. This 
involves a displacement from the centre of the circle of 
CtOo/3. A third Mohr's circle, for strain increments, 
2e,~o0/3A'can now be obtained by shifting the origin 
of this diagram to the left of a-a by the distance 
2~Oo/3 (Equation 29). In Fig. 7 the origin of the 
Mohr's circle of plastic strain increments lies on the 
line b-b. The intersection of the line b-b with the 
Mohr's circle of Fig. 7 therefore identifies the location 
of the 2'3 planes, for which extension rates in the 
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Figure 7 Mohr's circle constructions for stress and plastic strain 
rate. 

normal 2'2' and 33 directions vanish and extension is 
limited to the 1'1' direction, normal to the plane. For 
these planes 

o l ,v  - oz,2, + 2~Oo = 0 (34) 

Hence, from the Mohr's circle construction, the 
angle of inclination 0 of the dilatational band with 
respect to the major principal stress axis is given by: 

2~Oo 
cos20 = (35) 

0 1 - -  0 2 

There is no discussion in the literature concerning the 
orientations of dilatational bands in polymers, but 
a number of papers give data on the orientations 
of (void-free) shear bands in pressure-dependent 
materials, which provide a basis for comparison with 
Equation 35. If the material contains no voids and 
has IX = 0, then ct = 0 and 0 = 45 ~ Equation 35 pre- 
dicts that in polymers the inclination of shear band 
normals to the major principal stress axis deviates 
from 45 ~ because IX # 0. For solid polymers with 
f =  0, Equation 35 can be written 

2IX (00 - tx Om) 
cos20 - (36) 

3- Ol -- o2 



In uniaxial tension, a t  = 0-yt = 0-o/(1 + g/3) and 
0 " 2  = 0 - 3  = 0. Taking 0-c/o-a" = 1.33 (~ = 0.425) for 
rigid PVC, Equation 36 predicts 0 = 53.2 ~ (cos20 
= - 2g/3), which is in good agreement with the ex- 

perimental value of 55 ~ measured for PVC samples 
deformed in tension [38] and for thin-walled tubes 
deformed in tension and torsion [39]. In plane strain 
compression, where 0-t = - 0-yc = - 0-o/(1 - g/2), 
0-2 = 0 and 0-3 = 0-m = --cYyc/2, Equation 36 gives 
0 = 36.8~ = 2~/3) and ~F = 53.2 ~ which may be 
compared with an experimental value of �9 = 49 ~ 
[40]. 

Better agreement is found for bands formed in 
plane-strain compression tests on polystyrene 
(g = 0.39). E~uation 36 gives a value of ~ = 52.5 ~ 
whilst Argon et al. [41] measured a value of 53 ~ for 
bands formed in compression near a stress-concen- 
trating notch. An identical value was obtained by 
Bowden and Jukes [40] in a plane-strain compression 
test. 

The effect of introducing voids into deformation 
bands is to increase the pressure sensitivity of  the yield 
criterion, as indicated by Equation 23. Consequently, 
normals to the bands should rotate towards the major 
principal stress axis. Values of �9 calculated according 
to Equation 35 are given in Fig. 8 as a function of f 
the volume fraction of voids within the band, for 
a typical polymer with g = 0.39. The calculations 
show that as f is increased from 0 to 0.34, the angle 

decreases from about 38 ~ to 25 ~ . These results are 
consistent with the band angles observed by Yee and 
Pearson in optical microscopy studies on toughened 
epoxy resins [13], in Speroni et al.'s SEM work on 
toughened nylons [18] and in  Breuer et al.'s light 

�9 scattering observations on toughened PVC [7]. When 
the microvoid volume fraction is above 0.5, the band 
angle drops to zero. This is consistent with the experi- 
mental observations of Kambour  [42, 43] and of 
Donald and Kramer [44] that the volume fraction of 
polymer in fully-stressed crazes is less than 0.5. 

From a consideration of Mohr's circle of strain rate 
iFig. 7), the ratio of the shear strain rate e{ to the 
normal strain rate ~ is related to the angle �9 by 

tan2~F = - (37) 
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Figure 8 Angle �9 between the dilatational band normal and the 
major tensile axis as a function of the volume fraction of microvoids, 
according to the modified Berg~Gurson model (for a polymer with 
p = 0.39). 

Thus when ~? = 0, then tp = 0, as in craze formation. 
On the other hand, when ~ = 0, then tp = 45 o, which 
defines an ideal shear band in a von Mises (pressure 
insensitive) ductile solid. 

5. Discussion 
As noted in the Introduction, several authors have 
observed cavitation within the rubber particles of 
toughened plastics and some, including Ramsteiner 
etal .  [16, 17], Speroni et al. [18], Sue [11] and 
Dijkstra [20], have pointed out that the voids ob- 
served are associated with shear or deformation 
bands. The present paper has reviewed evidence 
presented in these and other publications which shows 
that the formation of dilatational bands occurs widely 
in rubber-toughened plastics. There are good reasons 
for expecting it to occur in most rubber-toughened 
polymers, especially when the polymer is under 
constraint and cavitational stresses and strains within 
the rubber particle are therefore relatively high. 

The work of Yee and Pearson on rubber-toughened 
epoxy resins has shown that particle cavitation begins 
at an early stage in the deformation [9, 10]. Initially 
the process appears to occur throughout the crack tip 
process zone, with no particular correlation between 
sites. Where there is a distribution of particle sizes, this 
pattern of cavitation is to be expected from Equa- 
tion 12, which predicts an inverse relationship be- 
tween cmc, the critical mean stress at cavitation, and 
R, the radius of the rubber particle. In a sample sub- 
jected to increasing applied stress, the effective con- 
centration of voids will increase as a result of both 
initiation and growth of cavities, until the combina- 
tion of applied stress and void content satisfies Equa- 
tion 23. Dilatational bands will then form in regions of 
high void content and propagate along planes defined 
by Equation 35. 

In the thin sections examined by Yee and Pearson it 
is difficult to identify dilatational bands under plain 
light, which simply shows the locations of the voids. 
Only when polarized light is used to examine the same 
specimen does the association between voids and de- 
formation bands become evident. This is probably the 
reason why the formation of dilatation bands has not 
been recognised widely as a general phenomenon in 
toughened plastics. The recent work of Sue on cavita- 
tion of rubber particles in a lightly cross-linked epoxy 
resin shows much more clearly that the voids form in 
well defined planar bands, which Sue calls 'croids' 
[11]. The other effective technique for identifying 
dilatation bands is low angle light scattering, which 
merits further attention as a method for studying 
deformation behaviour in toughened plastics. 

Before cavitation, the stresses on the surface of 
a rubber particle are determined by its bulk modulus 
and its volume strain. Cavitation of rubber particles is 
usually observed when the elastic tensile strain et in 
the toughened plastic is between 1% and 3 %. Taking 
Poisson's ratio for plastics as about 0,4, this means 
that the overall volume strain A V / V  in the material is 
between 0.2% and 0.55%. Because of the higher bulk 
compliance of rubbers, the volume strain within the 
rubber phase is probably in the range 0.4-1.0%. For 
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a rubber with a typical bulk modulus K = 2.0 GPa, 
this corresponds to a mean stress on the rubber at 
cavitation of between 8 and 20 MPa. Immediately 
a void has formed, the volume strain within the rubber 
phase, and therefore also the normal stresses at the 
surface of the particle, fall approximately to zero, so 
that the particle effectively becomes a void. 

This means, for example, that in a typical toughened 
nylon containing 20 wt % of functionalised ethy- 
lene propylene copolymer (equivalent to a rubber vol- 
ume fraction of 26%), the effective void content f in 
a cavitating shear band could under appropriate con- 
ditions reach a value as high as 0.26 before significant 
drawing occurred in the nylon matrix. From Fig. 8 the 
corresponding band angle is 29 ~ , in good agreement 
with the observations of Speroni. At low rates of 
loading, where cavitation proceeds slowly and begins 
in the larger particles, the concentration of voids is 
likely to be substantially smaller and the band angle 
higher--approaching 38 ~ . On the other hand, rela- 
tively small amounts of localised yielding in a region 
where rubber particles have cavitated can result in 
a significant increase m effective void content f This 
might explain Sue's observation of cavitated shear 
bands lying approximately normal to the tensile axis 
in toughened epoxy resins [11]. As the cavitated 
'croid' bands are initiated at crack tips, where i~y m is 
high and ~e is relatively low, void growth should be 
relatively rapid, in accordance with Equation 25. 

An important difference between rubber particle 
cavitation in toughened plastics and cavitation of 
metals, which are. the subject of Gurson's analysis, is 
that rubber particles themselves reduce the yield stress 
of the polymer, so that replacing them with cavitated 
particles has a less obvious effect on deformation 
behaviour in uniaxial tension. The dependence of 
(Yty(f)/~ty(0) on  void content, as shown in Fig. 5, is 
very similar to its expected dependence on rubber 
volume fraction qb, which can be expressed by making 
6o a function of qb. Cavitation of the rubber particles is 
of greater importance at notch tips, where dilatational 
yielding is necessary to achieve high strains. 

An important feature of the dilatation band model 
is that it retains a distinction between yielding under 
plane stress and yielding under plane strain conditions 
at a crack tip. This is implicit in the use of the von 
Mises equation as the basis for the model: the addition 
of extra terms to give Equation 23 does not alter the 
fact that ce, the driving force for yielding, is very 
different between plane stress and plane strain regions 
of a given crack. This is an important point, because 
some authors have concluded that rubber particle 
cavitation (or alternatively matrix cavitation) sets up 
a state of plane stress at the crack tip and that this in 
itself is sufficient to explain rubber toughening. 
Against this argument must be set the evidence that 
thickness effects are observed in fracture mechanics 
tests on a number of toughened plastics. For example, 
Kc increases linearly with B- 1, the reciprocal of speci- 
men thickness, in both toughened polypropylene and 
HIPS [45, 46]. Equation 23 offers a more coherent 
explanation of toughening, which accounts for these 
thickness effects. 
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The matrix ligaments between cavitated particles 
are subjected to both shear and mean stresses which 
vary rapidly from point to point. At the matrix rubber 
boundary the normal stresses are close to zero, as 
noted earlier, whereas at the centre of the ligament the 
stresses are more triaxial and mean stresses ~m are 
therefore higher. These variations in stress state over 
very small distances within a polymer ligament are 
similar to those discussed by Kramer in his analysis of 
craze fibrils [47]. The gradient of mean stress across 
an individual ligament VcYm is determined by the 
normal stress acting on the dilatation band (which 
determines the mean stress) and by the interparticle 
spacing Dip 

2 ( ~ b  - ~s) 
w ~  = (38) 

Dip 

where ~b and ~s are the mean stresses at the centre of 
the matrix ligament and at the interface with the 
rubber particle, respectively. This gradient in mean 
stress contributes to the flow rate within the ligaments 
and might explain the observations of Wu [48, 49-1 
and of Borggreve et aI. [50, 51"1 on the importance of 
interparticle spacing in controlling the brittle-tough 
transition in toughened nylon. 

The dilatational band model can thus explain why 
cavitation of the rubber particle, accompanied by 
a very small immediate increase in volume, has a 
dramatic effect on the kinetics of creep in toughened 
nylon containing 26 vol % of rubber, as observed by 
Bucknall et al. [19]. Even if every rubber particle in 
the material cavitated by converting an elastic volume 
strain of 1% into a void of equivalent volume, the 
resulting change in overall dimensions of the specimen 
would be negligible. However, according to the model 
proposed in this paper the sudden conversion of rub- 
ber particles into the mechanical equivalent of voids 
has the indirect effect of accelerating volume expan- 
sion through the formation Of dilatational bands. 

Finally, it should be noted that cavitated rubber 
particles behave like voids only during the early stages 
of the yielding process. As the local strain in the matrix 
increases, the rubber phase is forced to stretch until it 
reaches biaxial extension ratios of 3 or more. At this 
stage the stresses in the rubber become high enough 
to cause additional strain hardening of the cavitated 
material, thus preventing premature failure. This as- 
pect of the problem will be explored further in a later 
paper. 

6. Conclusions 
This paper has considered the mechanism of cavita- 
tion within the rubber phase of toughened plastics and 
the effects of cavitation on yielding, with particular 
reference to the formation of dilatational bands. 
Angles of cavitated shear bands to the tensile axis in 
polymers predicted by a modified Berg-Gurson model 
have been compared with observations recorded in 
the literature. The proposed models for particle cavi- 
tation and consequent deformation through the devel- 
opment of dilatational bands account for the effects of 



particle size and rubber modulus on the brittle-tough 
transition in toughened nylons and for changes in the 
kinetics of deformation following cavitation. The 
model also throws light on the relationship between 
toughness and interparticle spacing. 
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A p p e n d i x  A 
Rewriting Equation 23 

= cr--~ + 2 - !a~m 
~o / 

2fcosh ~ ) - f 2 - 1  = 0 (A1) + 

Using the substitutions Te = Oe/OO and Ta = Crm/oO 
we obtain 

= ~( re ,  T . ,  f )  = r~  + ~ r . ( 2  - g r . )  

+ 2fcosh(} Tn) - f 2  - 1 = 0 (A2) 

Equation 28 can be written 

Ara are a ar. aSl 

(A3) 

where 

a~ 

aTH 

a~ aTe 1 aor 3 slj 
= 2Te; - - 

aT e al~ij o" 0 ao'ij 2cr 0 cro 

2g(1 -- ~tT,) + 3fsinh Tn ; aclj = 3Cro 

= 2 cosh Tn - ;acri j - 0 

Substituting these partial derivatives into Equation 
A3 

~ij = A I 3 ~  + (2tx(1-,- gTH) + 3fsinh(~TH))3~ol 

(A4) 

On incorporating the factor 2/o0 into A we obtain 

A[- 3sij + f .  3~m 

(A5) 
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